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Power Round-Poles and Polars

1. Definition and Basic Properties

1. Note that the unit circles are not necessary in the solutions. They just make the graphs look nicer.

(1).
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(5). This is the same as in (1).

(6). It is interesting to note that this line goes through the A and the pole of b.
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2. The perpendicular through the origin to the polar of P is −pyx+pxy = 0. This line intersects P at P ∗ = P
|P |2 .

In particular, |P ∗| = 1
|P | . So P ∗ is on the other side of the unit circle from P . Since P ∗ is the closest point on

the polar to the origin, the polar intersects the unit circle once when P ∗ is on the unit circle, twice when P ∗ is
inside the unit circle, and zero times when P ∗ is outside the circle. In other words, the polar intersects the unit
circle once when P is on the unit circle, twice when P is outside the unit circle, and zero times when P is inside
the unit circle.

3. Let P ′ = P
|P |2 . This is the inversion of P because it is clearly on the ray OP , and also because it satisfies

OP ·OP ′ = OP ·OP ′

|P |2 = 1.
P ′ is on the polar of P because px( px

p2x+p2y
) + py( py

p2x+p2y
) = 1. Finally, the polar is perpendicular to OP because

OP is pointing in the same direction as the normal (px, py) to the polar.

4. Let O = (a, b) and apply the definition from problem 3 except replace OP ·OP ′ = 1 with OP ·OP ′ = r. In
particular, let’s find the point P ′ = (p′x, p

′
y) on the ray OP such that OP ·OP ′ = 1. To do this, parametrize the

ray OP as R(t)(a+ (px − a)t, b+ (py − b)t) for t ≥ 0. Then notice that

OP ·OR(t) = px(px − a)t+ py(py − b)t
Setting this to r and solving for t gives t = r

p2x+p2y−apx−bpy
. Plugging this into our parametrization,

P ′ = R

(
r

p2
x + p2

y − apx − bpy

)
=

(
a+

r(px − a)
p2
x + p2

y − apx − bpy
, b+

r(py − b)
p2
x + p2

y − apx − bpy

)
Finally, note that the perpendiculars to OP are of the form (b− py)x+ (px − a)y = c. To find the correct value
of c, plug P ′ into this, getting

c = (b− py)a+
r(b− py)(px − a)
p2
x + p2

y − apx − bpy
+ (px − a)b+

r(px − a)(py − b)
p2
x + p2

y − apx − bpy
= pxb− pya

So the polar is (b− py)x+ (px − a)y = pxb− pya.

2. The Duality Principle

5. Suppose A = (xA, yA) is on the polar of B = (xB , yB). The polar of A is xAx+ yAy = 1. Since B is on this
line, xAxB + yAyB = 1. This immediately implies that A is on the polar xBx+ yBy = 1 of B.
The other direction is completely symmetric.

6. Let A = (xA, yA), B = (xB , yB), and C = (xC , yC). Then a is xAx+ yAy = 1, b is xBx+ yBy = 1, and c is
xCx+ yCy = 1.
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a. This is just a restatement of 5, in our new notation.

b. The intersection of a and b is a point that is on both polars a and b. So by part (a), both A and B lie on the
polar of the intersection of a and b. In other words, the polar of the intersection of a and b is the line AB.
The converse follows immediately from the fact that reciprocation is an involution. In particular, apply recip-
rocation to the statement “the polar of the intersection of a and b is the line AB” to get the statement “the
intersection of a and b is the polar of AB.”

c. Suppose a, b, c go through the same point. Then, by part (a), the polar of this point goes through A,B,C.
In particular, A,B,C are collinear.
Suppose A,B,C are colinear. Then the pole of the line throgh A,B,C is on a, b, c. In particular, a, b, c all go
through the same point.

7. Given a, b, c concurrent and d, e, f concurrent, the three lines x = (b ∩ f)(c ∩ e), y = (a ∩ f)(c ∩ d), and
z = (a ∩ e)(b ∩ d) are also concurrent.

8. Take the dual to be the dual around the relevant circle, as described in our generalization in (5). Then
incidence of a point with a circle corresponds with tangency of its polar with the circle.
Let abcdef be sides of a cyclic dual hexagon (not necessarily in that order). Extend them to lines abcedf . Then
the three lines (a ∩ b)(d ∩ e), (b ∩ c)(e ∩ f), and (c ∩ d)(f ∩ a) are concurrent.

3. Reciprocation and Cyclic Quadrilaterals

9.

1.

X =
(

n

m+ n
xa +

m

m+ n
xb,

n

m+ n
ya +

m

m+ n
yb

)
Q =

(
−n

m− n
xa +

m

m− n
xb,

−n
m− n

ya +
m

m− n
yb

)
2. Just plug in and check(

n

m+ n
xa +

m

m+ n
xb

) (
−n

m− n
xa +

m

m− n
xb

)
+

(
n

m+ n
ya +

m

m+ n
yb

) (
−n

m− n
ya +

m

m− n
yb

)
=

−n2

m2 − n2
(x2
a + y2

a) +
m2

m2 − n2
(x2
b + y2

b ) =
−n2

m2 − n2
+

m2

m2 + n2
= 1

3. Apply Menelaus’ theorem to the triangle XYQ and the colinear points AP1C, giving

XP1

P1Y

Y C

CQ

QA

AX
= −1

Apply Menelaus’ theorem to the triangle XYQ and the colinear points BP1D, giving

XP2

P2Y

Y B

BQ

QD

DX
= −1

These two equations say that it is sufficient to show

Y C

CQ

QA

AX
=
Y B

BQ

QD

DX

Or equivalently, (
QA

QD
/
AX

DX

) (
BQ

CQ
/
Y B

Y C

)
= 1

But this is true because of the equations AX
XD = AQ

QD and BY
Y C = BQ

QC defining X and Y respectively.
Therefore P1 = P2. And since P1 = P2 is both on AC and BD, and P is defined as the intersection of AC and
BD, P = P1 = P2.

4. X and Y are both on the polar of Q by part (2). So the line XY is the polar of Q. By part (3), P is on XY .
So P is on the polar of Q.
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10. What we proved in part (9) is that if we have four points A,B,C,D on a circle, then AD ∩ BC is on the
polar of AC ∩BD. Just permute the points in this statement around to see that, in fact, each pair of points in
P,Q,R is on the polar of the other point.
The orthocenter of PQR is the center of the circle. In particular, if we are using the unit circle around the
origin, then the orthocenter of PQR is the origin. This is true because each side of the triangle is the polar
of the opposite vertex. So the perpendicular through each side through the opposite vertex goes through the
center of the circle. Ie, all three altitudes intersect at the center of the circle.

11. We already know that (1) and (2) are on the polar of AB ∩ CD, so let’s check the remaining points.
Point (3). Observe the following diagram. We want to show that R, the intersection of the tangent at A and
the tangent at B is on the polar of AB ∩ CD. Equivalently, we need to show that AB ∩ CD is on the polar of
R. To show this, let’s show that AB is the polar of R.
First, note that AB is perpendicular to OR by symmetry. So AB is parallel to the polar of R. To see that AB
is in fact equal to the polar of R, we need only show that OI ·OR = 1. One easy way to see this is to note that
|OI| = cos θ and |OR| = 1

cos θ .

Point (4). Same as point (3).
Point (5). Call point (5) X. We want to show that X is on the polar of AB∩CD, which is equivalent to showing
that AB ∩CD is on th polar of X. Since X is on the circle, the polar of X is the tangent to the circle at X. By
the definition of X, AB ∩ CD is on this tangent. So we are done.
Point (6). Same as point (5).

12. The line through P and the other intersection of the circumcircles is the radical axis of the two circumcircles.
So it suffices to prove that another of the “six points” also lies on the radical axis. But by Power of a Point
on the circle in which ABCD is inscribed, AD ∩ BC clearly has the same power with respect to both circles.
Therefore the second intersection of the circumcircles indeed lies on the line.

4. Self-Polar Triangles

13. (1) A and B are the poles of their opposite sides a and b by definition. Since C lies on both the polars of
A and B, both A and B lie on the polar of C, so line AB is the polar of C. (2) and (3) are basically true by
definition from (1).

14. Let O be the center of the desired polar circle. Note that OA must be perpendicular to BC and OB must
be perpendicular to AC; thus O is the orthocenter of ABC. Let D be the foot of the altitude from A to BC.
Then D is the inversion of A about the polar circle, so the radius of the polar circle is

√
OA ·OD.

15. Suppose E is the foot of the altitude from B to AC and F is the foot of the altitude from C to AB. Inversion
takes A to D, B to E, and C to F , hence takes the circumcircle of ABC to the circumcircle of DEF , otherwise
known as the nine-point circle of ABC.

5. Counting

16. First we prove by induction the nice fact that n lines split the plane into a maximum of n(n+1)
2 + 1 regions.

For the base case, notice that 1 line divides the plane into 2 = 1 + 1 regions.
For the inductive step, assume that n − 1 lines divide the plane into a maximum of n(n−1)

2 + 1 regions. Add
an n-th line that intersects all n − 1 lines in points where they are not intersecting each other. This new
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line splits each of the n regions it goes through into 2 regions. Ie, this new line adds n regions. So we have
n(n−1)

2 + 1 + n = n(n+1)
2 + 1 regions.

We still need to show that we can’t get more than n(n+1)
2 regions with n lines. If we do get more regions, then

either (1) we started with more than n(n−1)
2 + 1 regions before we added the n-th line or (2) we added more

than n regions when we added the n-th line. But (1) contradicts the inductive hypothesis that n− 1 lines give
us a maximum of n(n−1)

2 + 1 regions. And if (2) is the case, then our n-th line split more than n regions, forcing
it to have intersected more than n− 1 old lines. But there are only n− 1 old lines to intersect. So we are done.
Next, we claim that the maximum number of distinct linear partitions is n(n−1)

2 + 1 and we use our lemma to
prove this.
Take any set of n points P1, ..., Pn and translate them so that Pn is at the origin. Let L1, ..., Ln−1 be the dual
lines of P1, ..., Pn−1 and let R1, ..., Rs be the regions bounded by these lines. Now we will show that there is a
one-to-one correspondence between the regions R1, ..., Rs and the linear partitions of P1, ..., Pn.
To get a linear partition from a region Ri, take a point X ∈ Ri. The dual of X is some line ` that gives us
a linear partition of P1, ..., Pn. This partition is independent of our choice of X ∈ Ri because as we move X
around in Ri we don’t touch any of the dual lines L1, ..., Ln−1 and therefore ` never goes through any of the
points P1, ..., Pn. Furthermore, we get every partition because every partion induced by a line ` is acheived when
we take X to be the dual point to `. Finally, each partition we get is different because when we choose a region
R on one side of a line Lj we get Pj being in the same side of the partition as the origin and when we choose a
region R on the other side of the line Lj we get Pj being on the other side of the partition as the origin.
So there are the same number of linear partitions of P1, ..., Pn as there are regions created by the n − 1 dual
lines to P1, ..., Pn−1. By our lemma, we can arrange for this to be n(n−1)

2 + 1 but we can’t have it be any bigger.
So n(n−1)

2 is the maximum.


